In this case, you multiply the exponents. simplify rational or radical expressions with our free step-by-step math First Law of Exponents If a and b are positive integers and x is a real number. Next, we separate them into multiplication: 16/8 times p/p^3 times q^2 / q^4 times r^9. Examples Simplify Simplify Simplify It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction. Basic knowledge of algebraic expressions is required. To simplify your expression using the Simplify Calculator, type in your expression like 2(5x+4)-3x. That means that [latex]{a}^{n}[/latex] is defined for any integer [latex]n[/latex]. Simplifying expressions with exponents In the term , is the base and is the exponent. By using the distributive property of simplifying expression, it can be simplified as. . Solving equations mean finding the value of the unknown variable given. The calculator will show you all the steps and easy-to-understand explanations of how to simplify polynomials. By simplifying the expression, you can eliminate unnecessary terms and constants, making it easier to focus on the important parts of the equation and work through it step by step. We find that [latex]{2}^{3}[/latex] is 8, [latex]{2}^{4}[/latex] is 16, and [latex]{2}^{7}[/latex] is 128. The expression inside the parentheses is multiplied twice because it has an exponent of 2. But there is support available in the form of. Evaluating fractional exponents | Algebra (video) | Khan Academy By learning to identify patterns and relationships, and by using the properties of exponents and logarithms to simplify expressions, you can improve your ability to think critically and solve complex problems. The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but different exponents. Simplify mathematical expressions involving addition, subtraction, multiplication, division, and exponents Simplify Expressions Using the Order of Operations We've introduced most of the symbols and notation used in algebra, but now we need to clarify the order of operations. solving rational equations on ti 89. exponents + adding, subtracting, multiplying, dividing. By following these steps, you should be able to simplify most algebraic expressions. The first step I like to do is put the like terms on top of each other. Use the product rule to simplify each expression. To simplify an expression with fractions find a common denominator and then combine the numerators. Therefore, - k2 + 8k + 128 is the simplified form of the given expression. 2 2 = 2 2 = 4 Square Root Calculator Calculate real and complex square roots (2nd order roots) of numbers or x. Simplifying Expressions Calculator. flashcard sets. For any real numbers [latex]a[/latex] and [latex]b[/latex], where [latex]b\neq0[/latex], and any integer [latex]n[/latex], the power of a quotient rule of exponents states that. This is in simplified form using positive exponents. Free simplify calculator - simplify algebraic expressions step-by-step. simplify rational or radical expressions with our free step-by-step math First Law of Exponents If a and b are positive integers and x is a real number Deal with math question Math is a subject that often confuses students. The basic rule for simplifying expressions is to combine like terms together and write unlike terms as it is. The mathematical concepts that are important in simplifying algebraic expressions are given below: The rules for simplifying expressions are given below: Follow the steps given below to learn how to simplify expressions: Equations refer to those statements that have an equal to "=" sign between the term(s) written on the left side and the term(s) written on the right side. With this algebra simplifier, you can : Simplify an algebraic expression. BYJU'S online negative exponents calculator tool makes the calculation faster, and it displays the result in a fraction of seconds. Keep in mind that simplification is not always possible, and sometimes an expression may be already in its simplest form. Simplify exponential expressions calculator Try the Free Math Solver or Scroll down to Tutorials! Simplify radical,rational expression with Step The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. The calculator will simplify the equation step-by-step, and display the result. Algebra Calculators When simplifying expressions with exponents, rather than trying to work robotically from the rules, instead think about what the exponents mean. simplify rational or radical expressions with our free step-by-step math calculator. Need help? The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Let me show you another one. Use properties of rational exponents to simplify the expression calculator - Practice your math skills and learn step by step with our math solver. So why waste time and energy struggling with complex algebraic expressions when the Simplify Expression Calculator can do the work for you? While the "Fractional Exponents" calculator and "Solve for Exponents" calculator, assist those with a more advanced understanding of exponents. Simplify x.x2
To unlock this lesson you must be a Study.com Member. Powers of exponential expressions with the same base can be simplified by multiplying exponents. Simplify expressions with negative exponents calculator - Apps can be a great way to help learners with their math. However, using the associative property of multiplication, begin by simplifying the first two. Simplifying radical expressions (addition) Google Classroom About Transcript A worked example of simplifying an expression that is a sum of several radicals. Simplify Algebraic Expressions Calculator - Neurochispas - Mechamath Return to the quotient rule. Looking for help with your math homework? Simplifying exponent expressions calculator - Softmath Simplify expressions with positive exponents calculator - This Simplify expressions with positive exponents calculator helps to fast and easily solve any math. Doing math equations is a great way to keep your mind sharp and improve your problem-solving skills. Simplify 2n(n2+3n+4)
Solve an equation, inequality or a system. The cost of all 5 pencils = $5x. Here are the basic steps to follow to simplify an algebraic expression: remove parentheses by multiplying factors use exponent rules to remove parentheses in terms with exponents combine like terms by adding coefficients combine the constants Let's work through an example. Simplify Calculator The product [latex]8\cdot 16[/latex] equals 128, so the relationship is true. An error occurred while processing this operation. Use exponent rules to simplify terms with exponents, if any. Really a helpful situation where you can check answers after u solve a problem, and if your wrong, u can always fix it and learn from mistakes using this app, also thank you for the feature of calculating directly from the paper without typing. Using a calculator, we enter [latex]2,048\times 1,536\times 48\times 24\times 3,600[/latex] and press ENTER. . On most calculators, you enter the base, press the exponent key and enter the exponent. Expressions can be rewritten using exponents to be simplified visually and mathematically. All rights reserved. Ok. that was just a quick review. Simplifying polynomials calculator - softmath Kathryn teaches college math. Simplifying expressions with exponents calculator free Exponents Calculator - Symbolab Check out all of our online calculators here! Simplifying Exponents - Rules, Different Bases, Fractions, Examples By simplifying it further, we will get 3x, which will be the final answer. 1 comment ( 7 votes) Upvote Downvote Flag more htom 2 years ago well what if something was like 1/2 to the power of 7 how would you solve that? This gives us 1/3 times 1/x^2 times 1. The simplify calculator will then show you the steps to Simplify Calculator - Solumaths I can help you with any mathematic task you need help with. Simplifying expressions mean rewriting the same algebraic expression with no like terms and in a compact manner. Mathematics is the study of numbers and their relationships. Know the order of operations. Then it must be that ( 8 1 3) 3 = 8 3. Simplifying expressions using rules of exponents calculator simplify, solve for, expand, factor, rationalize. Consider the example [latex]\frac{{y}^{9}}{{y}^{5}}[/latex]. Are you tired of struggling with complex algebraic expressions? Free Exponents Calculator - Simplify exponential expressions using algebraic rules step-by-step. Simplify (m14n12)2(m2n3)12
Simplifying Expressions Calculator Exponents are supported on variables using the ^ (caret) symbol. If we keep separating the terms and following the properties, we'll be fine. How to Define a Zero and Negative Exponent, How to Simplify Expressions with Exponents, Simplifying Expressions with Rational Exponents, How to Graph Cubics, Quartics, Quintics and Beyond, How to Add, Subtract and Multiply Polynomials, How to Divide Polynomials with Long Division, How to Use Synthetic Division to Divide Polynomials, Remainder Theorem & Factor Theorem: Definition & Examples, Dividing Polynomials with Long and Synthetic Division: Practice Problems, Practice Problem Set for Exponents and Polynomials, Introduction to Statistics: Tutoring Solution, Study.com ACT® Test Prep: Help and Review, Prentice Hall Algebra 2: Online Textbook Help, College Preparatory Mathematics: Help and Review, McDougal Littell Pre-Algebra: Online Textbook Help, High School Algebra II: Homeschool Curriculum, How to Write a Numerical Expression? The rules for exponents may be combined to simplify expressions. Simplify expressions with negative exponents calculator 24 minus 20 is 4. Finally, our last step - multiplying the fractions straight across. Simplify
We can always check that this is true by simplifying each exponential expression. In this article, we will be focussing more on how to simplify algebraic expressions. Exponent Calculator - Simplify Exponential Expression - Mathway For instance, a pixel is the smallest unit of light that can be perceived and recorded by a digital camera. This gives us x^3-7. Next, x^2 divided by x^4 is x^(2-4). The denominator of the rational exponent is the index of the radical. Simplify Calculator. Try refreshing the page, or contact customer support. A particular camera might record an image that is 2,048 pixels by 1,536 pixels, which is a very high resolution picture. When you are working with a simplified expression, it is easier to see the underlying patterns and relationships that govern the equation. Remember, it will take time and practice to be good at simplifying fractions. . The exponent rules chart that can be used for simplifying algebraic expressions is given below: To simplify this expression, let us first open the bracket by multiplying 4b to both the terms written inside. To simplify the power of a product of two exponential expressions, we can use the power of a product rule of exponents, which breaks up the power of a product of factors into the product of the powers of the factors. Simplify radical,rational expression with Step. When they are, the basic rules of exponents and exponential notation apply when writing and simplifying algebraic expressions that contain exponents. She holds a master's degree in Learning and Technology. Be careful to distinguish between uses of the product rule and the power rule. To do this, we use the power rule of exponents. Simplify Calculator - MathPapa The simplify calculator will then show you the steps to, The power rule applies to exponents. However, when simplifying expressions containing exponents, don't feel like you must work only with, or straight from, these rules. Follow the PEMDAS rule to determine the order of terms to be simplified in an expression. This is the product rule of exponents. In math, simplifying expressions is a way to write an expression in its lowest form by combining all like terms together. In a similar way to the product rule, we can simplify an expression such as [latex]\frac{{y}^{m}}{{y}^{n}}[/latex], where [latex]m>n[/latex]. For instance, consider [latex]{\left(pq\right)}^{3}[/latex]. Use the power rule to simplify each expression. 5/15 reduces to 1/3. Math understanding that gets you We made the condition that [latex]m>n[/latex] so that the difference [latex]m-n[/latex] would never be zero or negative. Simplifying expressions with exponents calculator | Zens Simplify Expressions With Zero Exponents. In this case, we would use the zero exponent rule of exponents to simplify the expression to 1. It can be very useful while simplifying expressions. This is our answer simplified using positive exponents. ( ) Flash cards are a fantastic and easy way to memorize topics, especially math properties. [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}}\hfill \\ & =& \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]{\left(\frac{a}{b}\right)}^{n}=\frac{{a}^{n}}{{b}^{n}}[/latex], CC licensed content, Specific attribution, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface, [latex]\left(3a\right)^{7}\cdot\left(3a\right)^{10} [/latex], [latex]\left(\left(3a\right)^{7}\right)^{10} [/latex], [latex]\left(3a\right)^{7\cdot10} [/latex], [latex]{\left(a\cdot b\right)}^{n}={a}^{n}\cdot {b}^{n}[/latex], [latex]\left(-3\right)^{5}\cdot \left(-3\right)[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}[/latex], [latex]{t}^{5}\cdot {t}^{3}={t}^{5+3}={t}^{8}[/latex], [latex]{\left(-3\right)}^{5}\cdot \left(-3\right)={\left(-3\right)}^{5}\cdot {\left(-3\right)}^{1}={\left(-3\right)}^{5+1}={\left(-3\right)}^{6}[/latex], [latex]{\left(\frac{2}{y}\right)}^{4}\cdot \left(\frac{2}{y}\right)[/latex], [latex]{t}^{3}\cdot {t}^{6}\cdot {t}^{5}[/latex], [latex]{\left(\frac{2}{y}\right)}^{5}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}={\left(-2\right)}^{14 - 9}={\left(-2\right)}^{5}[/latex], [latex]\frac{{t}^{23}}{{t}^{15}}={t}^{23 - 15}={t}^{8}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}={\left(z\sqrt{2}\right)}^{5 - 1}={\left(z\sqrt{2}\right)}^{4}[/latex], [latex]\frac{{\left(-3\right)}^{6}}{-3}[/latex], [latex]\frac{{\left(e{f}^{2}\right)}^{5}}{{\left(e{f}^{2}\right)}^{3}}[/latex], [latex]{\left(e{f}^{2}\right)}^{2}[/latex], [latex]{\left({x}^{2}\right)}^{7}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}[/latex], [latex]{\left({x}^{2}\right)}^{7}={x}^{2\cdot 7}={x}^{14}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}={\left(2t\right)}^{5\cdot 3}={\left(2t\right)}^{15}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}={\left(-3\right)}^{5\cdot 11}={\left(-3\right)}^{55}[/latex], [latex]{\left({\left(3y\right)}^{8}\right)}^{3}[/latex], [latex]{\left({t}^{5}\right)}^{7}[/latex], [latex]{\left({\left(-g\right)}^{4}\right)}^{4}[/latex], [latex]\frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex], [latex]\frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex], [latex]\begin{array}\text{ }\frac{c^{3}}{c^{3}} \hfill& =c^{3-3} \\ \hfill& =c^{0} \\ \hfill& =1\end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{-3{x}^{5}}{{x}^{5}}& =& -3\cdot \frac{{x}^{5}}{{x}^{5}}\hfill \\ & =& -3\cdot {x}^{5 - 5}\hfill \\ & =& -3\cdot {x}^{0}\hfill \\ & =& -3\cdot 1\hfill \\ & =& -3\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}& =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{1+3}}\hfill & \text{Use the product rule in the denominator}.\hfill \\ & =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{4}}\hfill & \text{Simplify}.\hfill \\ & =& {\left({j}^{2}k\right)}^{4 - 4}\hfill & \text{Use the quotient rule}.\hfill \\ & =& {\left({j}^{2}k\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1& \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}& =& 5{\left(r{s}^{2}\right)}^{2 - 2}\hfill & \text{Use the quotient rule}.\hfill \\ & =& 5{\left(r{s}^{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 5\cdot 1\hfill & \text{Use the zero exponent rule}.\hfill \\ & =& 5\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\frac{{\left(d{e}^{2}\right)}^{11}}{2{\left(d{e}^{2}\right)}^{11}}[/latex], [latex]\frac{{w}^{4}\cdot {w}^{2}}{{w}^{6}}[/latex], [latex]\frac{{t}^{3}\cdot {t}^{4}}{{t}^{2}\cdot {t}^{5}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}={\theta }^{3 - 10}={\theta }^{-7}=\frac{1}{{\theta }^{7}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}=\frac{{z}^{2+1}}{{z}^{4}}=\frac{{z}^{3}}{{z}^{4}}={z}^{3 - 4}={z}^{-1}=\frac{1}{z}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}={\left(-5{t}^{3}\right)}^{4 - 8}={\left(-5{t}^{3}\right)}^{-4}=\frac{1}{{\left(-5{t}^{3}\right)}^{4}}[/latex], [latex]\frac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex], [latex]\frac{{f}^{47}}{{f}^{49}\cdot f}[/latex], [latex]\frac{1}{{\left(-3t\right)}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex], [latex]{b}^{2}\cdot {b}^{-8}={b}^{2 - 8}={b}^{-6}=\frac{1}{{b}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}={\left(-x\right)}^{5 - 5}={\left(-x\right)}^{0}=1[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}=\frac{{\left(-7z\right)}^{1}}{{\left(-7z\right)}^{5}}={\left(-7z\right)}^{1 - 5}={\left(-7z\right)}^{-4}=\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]\frac{{25}^{12}}{{25}^{13}}[/latex], [latex]{t}^{-5}=\frac{1}{{t}^{5}}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}={\left(a\right)}^{3}\cdot {\left({b}^{2}\right)}^{3}={a}^{1\cdot 3}\cdot {b}^{2\cdot 3}={a}^{3}{b}^{6}[/latex], [latex]2{t}^{15}={\left(2\right)}^{15}\cdot {\left(t\right)}^{15}={2}^{15}{t}^{15}=32,768{t}^{15}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}={\left(-2\right)}^{3}\cdot {\left({w}^{3}\right)}^{3}=-8\cdot {w}^{3\cdot 3}=-8{w}^{9}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}=\frac{1}{{\left(-7\right)}^{4}\cdot {\left(z\right)}^{4}}=\frac{1}{2,401{z}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}={\left({e}^{-2}\right)}^{7}\cdot {\left({f}^{2}\right)}^{7}={e}^{-2\cdot 7}\cdot {f}^{2\cdot 7}={e}^{-14}{f}^{14}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex], [latex]{\left(-3{y}^{5}\right)}^{3}[/latex], [latex]\frac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex], [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex], [latex]\frac{1}{{a}^{18}{b}^{21}}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}[/latex], [latex]{\left(\frac{-1}{{t}^{2}}\right)}^{27}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}=\frac{{\left(4\right)}^{3}}{{\left({z}^{11}\right)}^{3}}=\frac{64}{{z}^{11\cdot 3}}=\frac{64}{{z}^{33}}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}=\frac{{\left(p\right)}^{6}}{{\left({q}^{3}\right)}^{6}}=\frac{{p}^{1\cdot 6}}{{q}^{3\cdot 6}}=\frac{{p}^{6}}{{q}^{18}}[/latex], [latex]{\\left(\frac{-1}{{t}^{2}}\\right)}^{27}=\frac{{\\left(-1\\right)}^{27}}{{\\left({t}^{2}\\right)}^{27}}=\frac{-1}{{t}^{2\cdot 27}}=\frac{-1}{{t}^{54}}=-\frac{1}{{t}^{54}}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}={\left(\frac{{j}^{3}}{{k}^{2}}\right)}^{4}=\frac{{\left({j}^{3}\right)}^{4}}{{\left({k}^{2}\right)}^{4}}=\frac{{j}^{3\cdot 4}}{{k}^{2\cdot 4}}=\frac{{j}^{12}}{{k}^{8}}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}={\left(\frac{1}{{m}^{2}{n}^{2}}\right)}^{3}=\frac{{\left(1\right)}^{3}}{{\left({m}^{2}{n}^{2}\right)}^{3}}=\frac{1}{{\left({m}^{2}\right)}^{3}{\left({n}^{2}\right)}^{3}}=\frac{1}{{m}^{2\cdot 3}\cdot {n}^{2\cdot 3}}=\frac{1}{{m}^{6}{n}^{6}}[/latex], [latex]{\left(\frac{{b}^{5}}{c}\right)}^{3}[/latex], [latex]{\left(\frac{5}{{u}^{8}}\right)}^{4}[/latex], [latex]{\left(\frac{-1}{{w}^{3}}\right)}^{35}[/latex], [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex], [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex], [latex]\frac{1}{{c}^{20}{d}^{12}}[/latex], [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex], [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex], [latex]{\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex], [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex], [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex], [latex]\frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex], [latex]\begin{array}{cccc}\hfill {\left(6{m}^{2}{n}^{-1}\right)}^{3}& =& {\left(6\right)}^{3}{\left({m}^{2}\right)}^{3}{\left({n}^{-1}\right)}^{3}\hfill & \text{The power of a product rule}\hfill \\ & =& {6}^{3}{m}^{2\cdot 3}{n}^{-1\cdot 3}\hfill & \text{The power rule}\hfill \\ & =& \text{ }216{m}^{6}{n}^{-3}\hfill & \text{Simplify}.\hfill \\ & =& \frac{216{m}^{6}}{{n}^{3}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}& =& {17}^{5 - 4-3}\hfill & \text{The product rule}\hfill \\ & =& {17}^{-2}\hfill & \text{Simplify}.\hfill \\ & =& \frac{1}{{17}^{2}}\text{ or }\frac{1}{289}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}& =& \frac{{\left({u}^{-1}v\right)}^{2}}{{\left({v}^{-1}\right)}^{2}}\hfill & \text{The power of a quotient rule}\hfill \\ & =& \frac{{u}^{-2}{v}^{2}}{{v}^{-2}}\hfill & \text{The power of a product rule}\hfill \\ & =& {u}^{-2}{v}^{2-\left(-2\right)}& \text{The quotient rule}\hfill \\ & =& {u}^{-2}{v}^{4}\hfill & \text{Simplify}.\hfill \\ & =& \frac{{v}^{4}}{{u}^{2}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)& =& -2\cdot 5\cdot {a}^{3}\cdot {a}^{-2}\cdot {b}^{-1}\cdot {b}^{2}\hfill & \text{Commutative and associative laws of multiplication}\hfill \\ & =& -10\cdot {a}^{3 - 2}\cdot {b}^{-1+2}\hfill & \text{The product rule}\hfill \\ & =& -10ab\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}& =& {\left({x}^{2}\sqrt{2}\right)}^{4 - 4}\hfill & \text{The product rule}\hfill \\ & =& \text{ }{\left({x}^{2}\sqrt{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1\hfill & \text{The zero exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}& =& \frac{{\left(3\right)}^{5}\cdot {\left({w}^{2}\right)}^{5}}{{\left(6\right)}^{2}\cdot {\left({w}^{-2}\right)}^{2}}\hfill & \text{The power of a product rule}\hfill \\ & =& \frac{{3}^{5}{w}^{2\cdot 5}}{{6}^{2}{w}^{-2\cdot 2}}\hfill & \text{The power rule}\hfill \\ & =& \frac{243{w}^{10}}{36{w}^{-4}}\hfill & \text{Simplify}.\hfill \\ & =& \frac{27{w}^{10-\left(-4\right)}}{4}\hfill & \text{The quotient rule and reduce fraction}\hfill \\ & =& \frac{27{w}^{14}}{4}\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex], [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex], [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex], [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex], [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex], [latex]\frac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex].